If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x+5x^2=0
a = 5; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·5·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*5}=\frac{-24}{10} =-2+2/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*5}=\frac{0}{10} =0 $
| 4n-4=5n-4 | | 26+7=4x+47 | | -7n+29=-2(-3n+5) | | 54+x=33 | | 4^(3x-1)=64 | | -2(x+7)=-16 | | 2-1x=0-2x | | 1/2x-2/4=-3/4 | | 5{5x}=0.04 | | -2(x+7)=-15 | | -8m=6 | | 3-1x=-3 | | 20z=3.4 | | x-34=-23 | | 17-2x=29+2x | | -25=-5t | | 22-x=8+x | | 13-2x=4+x | | 11-5x=8x+24 | | 20+4c=-68 | | 3+r=-7 | | (4-z)(5z-1)=0 | | 3+4x=18-1x | | -4(3x+3)=0 | | |x-(3+2x)|=6 | | -5x(3x-4)=2(9-6x) | | b^2+5b+50=0 | | (42x5)+(14x2)= | | 111+2s=-9 | | -2(x+7)=19 | | 5/y=15/75 | | -23x13=72 |